


P.O. Box 219 • Batavia, Illinois 60510 • 1-800-452-1261 • flinn@flinnsci.com • Visit our website at: www.flinnsci.com

© 1999 Flinn Scientific, Inc. All Rights Reserved.

# **Respiration versus Photosynthesis**

Catalog Nos. B0173, B0047

Publication No. 141.00

## Introduction

Put critical thinking to the test with this apparent "reversal" of photosynthesis.

# Concepts

- Photosynthesis
- Respiration

## Materials

| Aquatic snails, 4                                       | Glass wide-mouth bottles with tight-fitting lids, 8 |  |
|---------------------------------------------------------|-----------------------------------------------------|--|
| Elodea (Anacharis) sprigs, 4                            | Medicine dropper                                    |  |
| Bromthymol blue (BTB) indicator solution, 0.04% aqueous | Water, aged tap or spring                           |  |

pН

Indicators

# Safety Precautions

Students should wear chemical splash goggles.

# Pre-Lab

- 1. Number the bottles 1–8, and fill each about 4/5 full with spring water.
- 2. Add enough of the bromthymol blue indicator solution to each bottle to obtain a green color (about 2–3 mL).
- 3. Add the following items to the indicated bottles and cap the bottles tightly:

| Bottles | Contents               | Bottles | Contents                         |
|---------|------------------------|---------|----------------------------------|
| 1, 5    | Sprig of <i>Elodea</i> | 3, 7    | Sprig of <i>Elodea</i> and Snail |
| 2, 6    | Snail                  | 4, 8    | Nothing — this is the control.   |

- 4. Place bottles 1–4 near a light source and place bottles 5–8 in the dark (inside a drawer, for example).
- 5. Within a few hours the following should result: Bottles 3, 4, and 8 should remain green, though Bottle 3 may turn a slightly different shade of green. Bottle 1 should be blue, and Bottles 2, 5, 6, and 7 should be yellow.

#### Procedure

- 1. Display each set of bottles to the students.
- 2. Describe the contents of each bottle, and the conditions (light or dark) under which each set was kept.
- 3. Ask students to explain their observations.

#### Discussion

Carbon dioxide dissolves in (and reacts with) water, forming carbonic acid,  $H_2CO_3$ . Carbonic acid then immediately dissociates into a hydrogen ion and a bicarbonate ion. The reaction occurring in solution is:

 $CO_2(g) + H_2O(l) \longrightarrow H_2CO_3 \longrightarrow H^+(aq) + HCO_3^-(aq)$ 

The free hydrogen ions (H<sup>+</sup>) lower the pH of the solution, making it more acidic. The degree to which the pH changes is proportional to the amount of  $CO_2$  that dissolves in the water. In other words, as more  $CO_2$  dissolves in water, the pH of the solution will continue to decrease. If  $CO_2$  is removed from the solution, the pH will increase. A pH indicator such as BTB can therefore indicate the relative amount of  $CO_2$  dissolved in water based on the color of the solution.

In this activity, photosynthesis occurring in the *Elodea* exposed to light removes  $CO_2$  from the solution, thereby raising the pH. The general chemical equation representing photosynthesis is:

$$6CO_2 + 12H_2O \xrightarrow{\text{light energy}} C_6H_{12}O_6 + 6H_2O + 6O_2$$

This higher pH is indicated by the blue color of the indicator in Bottle 1, which contained *Elodea* exposed to light, i.e., photosynthesizing. The snail, on the other hand, respires, producing  $CO_2$ , thereby lowering the pH. The general chemical equation representing respiration is:

$$C_6H_{12}O_6 + 6H_2O + 6O_2 \xrightarrow{\text{enzymes}} 6CO_2 + 12H_2O + \text{energy}$$

This lower pH is indicated by the yellow color of the indicator in Bottles 2 and 6, since the snail respires with or without light. In Bottle 7, the *Elodea* cannot photosynthesize in the absence of light. Bottle 3 will have a relatively neutral pH, since the snail is respiring and the plant is photosynthesizing. Bottle 5 will be the stumper for the students. It is yellow, indicating an acidic solution, but there is no snail; only *Elodea*. So where did the  $CO_2$  come from? The  $CO_2$  was produced as a result of cellular respiration by the *Elodea*. Both photosynthesis and cellular respiration occur in green plants when light is available. In Bottle 1, photosynthesis is the dominant process over respiration, resulting in a net decrease in  $CO_2$  concentration. However, in the absence of light, the plant cannot photosynthesize; it can only respire. Therefore, there is a net increase in  $CO_2$  concentration, and the pH drops as the  $CO_2$  dissolves, producing carbonic acid.

#### Disposal

The snails and *Elodea* will not be harmed by the BTB solution and can be returned to their place of origin. Snails or *Elodea* purchased from an outside source should not be released into the local environment. All solutions can be flushed down the drain with excess water according to Flinn Suggested Disposal Method #26b.

#### Acknowledgment

Special thanks to David Eichinger, Assistant Professor of Science Education, Purdue University, West Lafayette, IN, for bringing this activity to our attention.

#### Materials for *Respiration versus Photosynthesis* are available from Flinn Scientific, Inc.

| Catalog No. | Description                                | Price/Each                         |
|-------------|--------------------------------------------|------------------------------------|
| B0173       | Bromthymol blue indicator solution, 100 mL | Consult Your                       |
| LM1106      | Snails — pond, pkg/12                      | Current Flinn<br>Catalog/Reference |
| LM1132      | Elodea (Anacharis), pkg/12                 | Manual.                            |
| AP8445      | Bottle, ointment jar style, 4 oz.          |                                    |